

National Occupational Hygiene Laboratory Safety and Occupational Health Administration

Tests Report: Measurement of exposure to manganese with SMAW electrodes welding.

Objective: Manganese exposure comparison for SMAW electrodes.

Performance:

Experiments were planed and performed by National Occupational Hygiene Laboratory (Safety and Occupational Health Administration, Ministry of Labor, Social Affairs and Social Services, Israel).

Methodology:

Exposure to manganese fumes produced during the welding process was done by two different ways. In first way, welder's exposure to manganese fume was tested during prolonged welding of plate for examination of mechanical properties according to AWS A5.1 standard. Experiment workplace in welding laboratory was equipped with moveable hood above the bench and with bottom exhaust ventilation under the bench. Welding time was approximately 6 hours.

Second type of experiment was done with specially prepared chamber (Figure 1). From the top, chamber is connected by flexible pipe to the pumping system which takes out all produced fumes. On the narrow entering to the flexible pipe cyclone with the cellulosic filter is located, which is connected by tube to precise lab pump. In such configuration of experiment most of the fume pass through cellulosic filter.

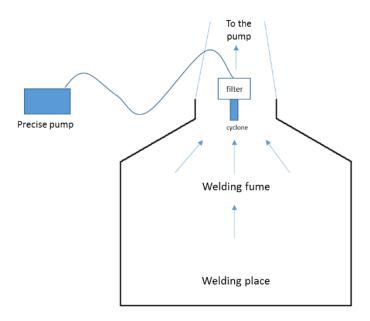


Figure 1 : Schematic view of welding chamber for Mn exposure measurement.

National Occupational Hygiene Laboratory Safety and Occupational Health Administration

Results:

Table 1: Preliminary results of Manganese exposure - rutile coated E6013 – Welding Chamber

Electrode type	Z-11 E6013	Zika – 11	E 6013	E6013
Number of test		E6013 LMn	(competitor 1)	(competitor 2)
1	0.99	0.31	0.51	0.48
2	0.67	0.32	0.72	0.52
3	0.62	0.26	0.47	0.47
4	0.82	0.31	0.54	0.61
5	0.77	0.32	0.55	0.54
Mean	0.77	0.30	0.56	0.52
Variance	0.02083	0.00063	0.0092	0.0031
Observations	5	5	5	5
Pearson Correlation	0.46		0.212	
Hypothesized Mean Difference	0		0	
df	4		4	
t Stat	7.80		0.76	
P(T<=t) one-tail	0.0007		0.25	
t Critical one-tail	2.13		2.13	
P(T<=t) two-tail	0.0015		0.49	
t Critical two-tail	2.78		2.78	

Table 2 : Preliminary results of Manganese exposure - rutile coated E6013

Electrode type	Exhaust ventilation (mg/m3)
Z-11 E6013	0.007
E 6013 (competitor 1)	0.008
E6013 (competitor 2)	-
Zika - 11 LMn	0.003

National Occupational Hygiene Laboratory Safety and Occupational Health Administration

State of Israel

Table 3: Preliminary results of Manganese exposure, basic coated E7018 – Welding Chamber

Electrode type	Z-4 E7018	Z 7018	E7018-1 H4R
Number of test	regular	LMn	(competitor)
1	1.11	1.09	1.40
2	1.31	1	1.09
3	1.08	0.64	0.91
4	1.2	1.04	1.37
5	2.1	0.85	1.31
6	1.05	0.9	
7	1.11	0.74	
Mean	1.28	0.89	1.22
Variance	0.1384	0.027	0.21
Observations	7	7	5
Pearson Correlation	-0.0063		
Hypothesized Mean	0		
Difference			
df	6		
t Stat	2.50		
P(T<=t) one-tail	0.023		
t Critical one-tail	1.94		
P(T<=t) two-tail	0.046		
t Critical two-tail	2.45		

Table 4: Preliminary results of Manganese exposure - basic coated E7018

Electrode type	Exhaust ventilation (mg/m3)	
Z-4 E7018 regular	-	
E7018-1 H4R (competitor)	0.013	
Z 7018 LMn	0.0067	

Conclusions:

- 1. Zika-LMn welding electrodes showed low exposure to manganese in comparison with regular electrodes of zika and other competitors.
- 2. There is a clear correlation between two different exposure methods measurements.

Eduard Pekar-Levinzon Deputy of Laboratory Director